Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neuropathol Exp Neurol ; 83(5): 294-306, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38553027

RESUMO

Two aspects of the neuropathology of early Huntington disease (HD) are examined. Neurons of the neostriatum are counted to determine relative loss in striosomes versus matrix at early stages, including for the first time in preclinical cases. An immunohistochemical procedure is described that tentatively distinguishes early HD from HD mimic disorders in postmortem brains. Counts of striatal projection neurons (SPNs) in striosomes defined by calbindin immunohistochemistry versus counts in the surrounding matrix are reported for 8 Vonsattel grade 0 (including 5 premanifest), 8 grade 1, 2 grade 2 HD, and for 8 control postmortem brains. Mean counts of striosome and matrix SPNs were significantly lower in premanifest grade 0 versus controls, with striosome counts significantly lower than matrix. In 8 grade 1 and 2 grade 2 brains, no striosomes with higher SPN counts than in the surrounding matrix were observed. Comparing dorsal versus ventral neostriatum, SPNs in dorsal striosomes and matrix declined more than ventral, making clear the importance of the dorsoventral site of tissue selection for research studies. A characteristic pattern of expanded polyglutamine-immunopositive inclusions was seen in all HD cases. Inclusions were always present in some SPNs and some pontine nucleus neurons and were absent in Purkinje cells, which showed no obvious cell loss.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/patologia , Corpo Estriado/patologia , Neostriado/patologia , Neurônios/patologia , Calbindinas
2.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528004

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas Cromossômicas não Histona , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
4.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464084

RESUMO

Tourette syndrome (TS) is a disorder of high-order integration of sensory, motor, and cognitive functions afflicting as many as 1 in 150 children and characterized by motor hyperactivity and tics. Despite high familial recurrence rates, a few risk genes and no biomarkers have emerged as causative or predisposing factors. The syndrome is believed to originate in basal ganglia, where patterns of motor programs are encoded. Postmortem immunocytochemical analyses of brains with severe TS revealed decreases in cholinergic, fast-spiking parvalbumin, and somatostatin interneurons within the striatum (caudate and putamen nuclei). Here, we performed single cell transcriptomic and chromatin accessibility analyses of the caudate nucleus from 6 adult TS and 6 control post-mortem brains. The data reproduced the known cellular composition of the adult human striatum, including a majority of medium spiny neurons (MSN) and small populations of GABAergic and cholinergic interneurons. Comparative analysis revealed that interneurons were decreased by roughly 50% in TS brains, while no difference was observed for other cell types. Differential gene expression analysis suggested that mitochondrial function, and specifically oxidative metabolism, in MSN and synaptic function in interneurons are both impaired in TS subjects, while microglia display strong activation of immune response pathways. Our data explicitly link gene expression changes to changes in cis-regulatory activity in the corresponding cell types, suggesting de-regulation as a factor for the etiology of TS. These findings expand on previous research and suggest that impaired modulation of striatal function by interneurons may be the origin of TS symptoms.

5.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260461

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron-and-Astrocyte Program (SNAP). In schizophrenia and aging - two conditions that involve declines in cognitive flexibility and plasticity 1,2 - cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.

6.
Alzheimers Dement ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041855

RESUMO

INTRODUCTION: A wide array of post-translational modifications of the tau protein occurs in Alzheimer's disease (AD) and they are critical to pathogenesis and biomarker development. Several promising tau markers, pT181, pT217, and pT231, rely on increased phosphorylation within a common molecular motif threonine-proline-proline (TPP). METHODS: We validated new and existing antibodies against pT217, pT231, pT175, and pT181, then combined immunohistochemistry (IHC) and immunoassays (ELISA) to broadly examine the phosphorylation of the tau TPP motif in AD brains. RESULTS: The tau burden, as examined by IHC and ELISA, correlates to Braak stages across all TPP sites. Moreover, we observed regional variability across four TPP motif phosphorylation sites in multiple brains of sporadic AD patients. DISCUSSION: We conclude that there is an elevation of TPP tau phosphorylation in AD brains as disease advances. The regional variability of pTPP tau suggests that examining different phosphorylation sites is essential for a comprehensive assessment of tau pathology.

7.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824615

RESUMO

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Assuntos
Callithrix , Neocórtex , Animais , Neocórtex/fisiologia , Neurônios/fisiologia , Distribuição Tecidual
8.
Alzheimers Dement (Amst) ; 15(3): e12464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745891

RESUMO

Introduction: Transdiagnostic dimensional phenotypes are essential to investigate the relationship between continuous symptom dimensions and pathological changes. This is a fundamental challenge to post-mortem work, as assessments of phenotypic concepts need to rely on existing records. Methods: We adapted well-validated methodologies to compute National Institute of Mental Health Research Domain Criteria (RDoC) scores using natural language processing (NLP) from electronic health records (EHRs) obtained from post-mortem brain donors and tested whether cognitive domain scores were associated with Alzheimer's disease neuropathological measures. Results: Our results confirm an association of EHR-derived cognitive scores with neuropathological findings. Notably, higher neuropathological load, particularly neuritic plaques, was associated with higher cognitive burden scores in the frontal (ß = 0.38, P = 0.0004), parietal (ß = 0.35, P = 0.0008), temporal (ß = 0.37, P = 0.0004) and occipital (ß = 0.37, P = 0.0003) lobes. Discussion: This proof-of-concept study supports the validity of NLP-based methodologies to obtain quantitative measures of RDoC clinical domains from post-mortem EHR. The associations may accelerate post-mortem brain research beyond classical case-control designs.

9.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205494

RESUMO

INTRODUCTION: Transdiagnostic dimensional phenotypes are essential to investigate the relationship between continuous symptom dimensions and pathological changes. This is a fundamental challenge to postmortem work, as assessment of newly developed phenotypic concepts needs to rely on existing records. METHODS: We adapted well-validated methodologies to compute NIMH research domain criteria (RDoC) scores using natural language processing (NLP) from electronic health records (EHRs) obtained from post-mortem brain donors and tested whether RDoC cognitive domain scores were associated with hallmark Alzheimer's disease (AD) neuropathological measures. RESULTS: Our results confirm an association of EHR-derived cognitive scores with hallmark neuropathological findings. Notably, higher neuropathological load, particularly neuritic plaques, was associated with higher cognitive burden scores in the frontal (ß=0.38, p=0.0004), parietal (ß=0.35, p=0.0008), temporal (ß=0.37, p=0. 0004) and occipital (ß=0.37, p=0.0003) lobes. DISCUSSION: This proof of concept study supports the validity of NLP-based methodologies to obtain quantitative measures of RDoC clinical domains from postmortem EHR.

10.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066393

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

11.
Neurosci Lett ; 792: 136958, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356820

RESUMO

Alzheimer's disease (AD) is characterized behaviorally by cognitive deterioration and emotional disruption, and neuropathologically by amyloid-ß (A ß) plaques, neurofibrillary tangles, and complement C3 (C3)-expressing neurotoxic, reactive astrocytes. We previously demonstrated that C3 + reactive astrocytes in the hippocampus and entorhinal cortex of AD patients express serine racemase (SR), which produces the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine. We show here that C3 + reactive astrocytes express SR in the amygdala of AD patients and in an amyloid mouse model of familial AD (5xFAD). 5xFAD mice also have deficits in cue fear memory recall that is dependent on intact amygdala function. Our results suggest that D-serine produced by reactive astrocytes in the amygdala could contribute to glutamate excitotoxicity and neurodegeneration observed with AD progression.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Astrócitos , Tonsila do Cerebelo , Placa Amiloide , Modelos Animais de Doenças , Serina
12.
Nat Genet ; 54(11): 1630-1639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280734

RESUMO

The canonical paradigm for converting genetic association to mechanism involves iteratively mapping individual associations to the proximal genes through which they act. In contrast, in the present study we demonstrate the feasibility of extracting biological insights from a very large region of the genome and leverage this strategy to study the genetic influences on autism. Using a new statistical approach, we identified the 33-Mb p-arm of chromosome 16 (16p) as harboring the greatest excess of autism's common polygenic influences. The region also includes the mechanistically cryptic and autism-associated 16p11.2 copy number variant. Analysis of RNA-sequencing data revealed that both the common polygenic influences within 16p and the 16p11.2 deletion were associated with decreased average gene expression across 16p. The transcriptional effects of the rare deletion and diffuse common variation were correlated at the level of individual genes and analysis of Hi-C data revealed patterns of chromatin contact that may explain this transcriptional convergence. These results reflect a new approach for extracting biological insight from genetic association data and suggest convergence of common and rare genetic influences on autism at 16p.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Cromossomos , Deleção Cromossômica , Cromossomos Humanos Par 16/genética
14.
Front Integr Neurosci ; 16: 934764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875507

RESUMO

Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.

15.
Nat Rev Neurol ; 18(5): 273-288, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35352034

RESUMO

Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Adulto , Tonsila do Cerebelo , Animais , Medo/fisiologia , Hipocampo , Humanos , Mamíferos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/terapia
16.
Cell Rep ; 38(3): 110282, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045295

RESUMO

Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Circular/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Transtorno Bipolar/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Eur J Neurosci ; 53(12): 3960-3987, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33070392

RESUMO

Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.


Assuntos
Esquizofrenia , Encéfalo/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Neuroglia/metabolismo , Esquizofrenia/genética
18.
Gen Hosp Psychiatry ; 68: 46-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310013

RESUMO

BACKGROUND: Agitation is a common feature of many neuropsychiatric disorders. OBJECTIVE: Understanding the prevalence, implications, and characteristics of agitation among hospitalized populations can facilitate more precise recognition of disability arising from neuropsychiatric diseases. METHODS: We developed two agitation phenotypes using an expansion of expert curated term lists. These phenotypes were used to characterize five years of psychiatric admissions. The relationship of agitation symptoms and length of stay was examined. RESULTS: Among 4548 psychiatric admissions, 1134 (24.9%) included documentation of agitation based on the primary agitation phenotype. These symptoms were greater among individuals with public insurance, and those with mania and psychosis compared to major depressive disorder. Greater symptoms were associated with longer hospital stay, with ~0.9 day increase in stay for every 10% increase in agitation phenotype. CONCLUSION: Agitation was common at hospital admission and associated with diagnosis and longer length of stay. Characterizing agitation-related symptoms through natural language processing may provide new tools for understanding agitated behaviors and their relationship to delirium.


Assuntos
Transtorno Depressivo Maior , Transtornos Psicóticos , Ansiedade , Humanos , Processamento de Linguagem Natural , Agitação Psicomotora/epidemiologia
20.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188775

RESUMO

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Humanos , Análise de Componente Principal , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...